氣相生長(zhǎng)納米炭纖維的研究進(jìn)展
(作者未知) 2009/5/10
(接上頁)的催化劑顆?梢苑植荚谌S空間內(nèi),因此其單位時(shí)間內(nèi)產(chǎn)量可以很大,可連續(xù)生產(chǎn),有利于工業(yè)化生產(chǎn)。
影響氣相生長(zhǎng)炭纖維的因素很多,研究也較充分,如氫氣的純度、碳?xì)錃怏w化合物的分壓、氫氣和碳?xì)錃怏w化合物的比例、反應(yīng)溫度、催化劑(顆粒大小、形狀、結(jié)晶構(gòu)造)的選取、氣體的流量、微量元素的添加(如S)等都會(huì)影響到VGCF的生長(zhǎng)。由于VGCNF和VGCF一樣也是雙層結(jié)構(gòu),即由兩種不同結(jié)構(gòu)的炭組成,內(nèi)部是結(jié)晶程度比較好、具有理想石墨結(jié)構(gòu)、中間空心的初期纖維;外層是結(jié)晶程度比較差、具有亂層結(jié)構(gòu)的熱解炭層[9]。因此,影響氣相生長(zhǎng)炭纖維的因素,也將影響著VGCNF的生長(zhǎng)。
(1) 氫氣除了作載氣外,還用以將Fe、Co、Ni等的金屬化合物還原成為起催化作用的Fe、Co、Ni等單質(zhì)。另外,還具有下列作用:(a)H2在金屬表面上的化學(xué)吸附可以阻止石墨炭層的凝聚反應(yīng);(b)H2在金屬表面上的化學(xué)吸附也可以弱化金屬與金屬間的結(jié)合力,使金屬顆粒的大小適合于生長(zhǎng)炭纖維[10];(c)H2的存在也可以使催化劑顆粒重構(gòu),以形成可以大量吸附碳?xì)浠衔锏谋砻妫?1]。
(2) 其它元素如硫的加入對(duì)VGCF的生長(zhǎng)也產(chǎn)生很大影響,Kim[12]在研究硫的吸附與碳在Co做催化劑析出時(shí)的相關(guān)作用時(shí)發(fā)現(xiàn):少量的硫可以促進(jìn)金屬表面的重構(gòu),防止催化劑失活。硫量過大,則會(huì)生成過多的硫化物,抑制催化劑的催化活性。另外,少量的硫也可以促進(jìn)催化劑顆粒分裂,這對(duì)于生長(zhǎng)高質(zhì)量的納米級(jí)VGCF具有非常重要的作用。
(3) 為了高效率生長(zhǎng)VGCNF,催化劑一直是研究的熱點(diǎn)。Baker發(fā)現(xiàn)在鐵磁性金屬中添加第二種金屬可以改變炭纖維的生長(zhǎng)特性,產(chǎn)生非常高的有序結(jié)構(gòu)[13],生長(zhǎng)多種形態(tài)的炭纖維。而且可以減少催化劑顆粒直徑,VGCF的產(chǎn)量和生長(zhǎng)速率也有所提高[14]。人們也發(fā)現(xiàn)往過渡族金屬(Fe、 Co、 Ni) 中引入第二種金屬同樣也能影響VGCNF的形貌和特性[6, 7].Chambers 等 在研究往Co里加入Cu對(duì)VGCNF的結(jié)構(gòu)和性能的影響后, 發(fā)現(xiàn)所制備的VGCNF具有非常高的結(jié)晶性[7]。
另外, Rodriguez [6] 用純鐵作催化劑制備出石墨片層平行于纖維軸向的ribbon 型的納米炭纖維; 用Fe-Cu (7:3)作催化劑制備出石墨片層與纖維軸向呈一定角度的 herringbone 型的納米炭纖維; 用硅基鐵作催化劑制備出石墨片層垂直于纖維軸向的納米炭纖維。所有這些現(xiàn)象都說明了催化劑顆粒的特性影響著納米炭纖維的生長(zhǎng)。
總之,氫氣的分壓、催化劑的選取、碳?xì)浠衔锏牧髁俊⑽⒘吭氐募尤攵紩?huì)影響炭纖維的生長(zhǎng),對(duì)于VGCNF的制備,所有這些因素都必須加以考慮。
3 氣相生長(zhǎng)納米炭纖維的生長(zhǎng)機(jī)理
一般認(rèn)為,VGCNF與VGCF一樣是由兩種不同結(jié)構(gòu)的炭組成的,內(nèi)層是結(jié)晶比較好的石墨片層結(jié)構(gòu)(即納米炭管),外層是一層很薄的熱解炭,中間是中空管。這些結(jié)構(gòu)特性決定了VGCNF兩個(gè)不同的生長(zhǎng)歷程。即先是在催化劑表面氣相生長(zhǎng)納米纖維,然后是在其上面熱解炭沉積過程。其中,在催化劑表面氣相生長(zhǎng)納米炭纖維可以分為以下幾個(gè)過程:
(1) 碳?xì)錃怏w化合物在催化劑表面的吸附;
(2) 吸附的碳?xì)浠衔锎呋療峤獠⑽龀鎏迹?br>
(3) 碳在催化劑顆粒中的擴(kuò)散;
(4) 碳在催化劑顆粒另一側(cè)的析出,纖維生長(zhǎng);
(5) 催化劑顆粒失活,纖維停止生長(zhǎng)。
目前,世界各國的科學(xué)家對(duì)VGCNF的生長(zhǎng)機(jī)理還沒有一個(gè)統(tǒng)一的認(rèn)識(shí),在許多方面還有爭(zhēng)議。
例如:碳在催化劑顆粒中的擴(kuò)散是靠溫度梯度為推動(dòng)力還是靠濃度梯度為推動(dòng)力;真正起催化作用的是金屬單質(zhì)還是金屬碳化物至今也是一個(gè)爭(zhēng)論的焦點(diǎn)。
Oberlin [5] 用Fe-苯-H2體系生成了VGCF,并對(duì)催化劑顆粒的電子衍射進(jìn)行分析,發(fā)現(xiàn)有滲碳體Fe3C的存在。Audier[15]用選區(qū)電子衍射技術(shù)也發(fā)現(xiàn)了Fe5C2和Fe3C的存在。Baker[16]在研究了各種Fe的氧化物和碳化物的反應(yīng)活性之后不同意滲碳體有催化活性的觀點(diǎn)。當(dāng)用很高濃度的滲碳體做催化劑時(shí),沒有發(fā)現(xiàn)炭纖維生長(zhǎng)。
Yang在研究H2對(duì)碳降解的作用時(shí)發(fā)現(xiàn),F(xiàn)e3C表面對(duì)苯的熱解無活性,通H2后恢復(fù)了金屬性,則生長(zhǎng)炭纖維的活性也恢復(fù)了。盡管金屬碳化物有催化活性的說法與實(shí)驗(yàn)結(jié)果不符合,但碳化物的表面作用不可忽視。
另外,碳在催化劑顆粒中的擴(kuò)散是靠溫度梯度為推動(dòng)力還是靠濃度梯度為推動(dòng)力也是一個(gè)爭(zhēng)論的焦點(diǎn)。最初,Baker [16] 假定碳在催化劑顆粒中的擴(kuò)散是靠溫度梯度為推動(dòng)力的。碳?xì)錃怏w化合物在催化劑顆粒一側(cè)放熱分(未完,下一頁)
|