機械臂路徑特征點目標軌跡規(guī)劃及實驗分析
張欽 2023/9/16 18:35:04
江蘇聯(lián)合職業(yè)技術學院,淮安生物工程分院,江蘇淮安 223200
摘要:采用傳統(tǒng)機械臂軌跡規(guī)劃算法存在控制精度不高以及時延較大的問題。為了提高機械臂跟蹤目標軌跡效率,設計了一種基于路徑特征點算法的機械臂跟蹤目標軌跡優(yōu)化方法。利用相平面法調(diào)節(jié)使算法達到更高處理效率。研究結(jié)果表明:隨著路徑點數(shù)量增加,算法時間明顯延長,設置太多路徑點可以實現(xiàn)算法效率的顯著提升,整個計算過程所需的規(guī)劃時間能夠大幅縮短。采用本文算法可以獲得比其它路徑規(guī)劃算法更短的耗時,且更適合于復雜路徑。該研究具有很好的實際應用價值,易于推廣開來。
關鍵詞:機器臂;路徑特征點;時間近似最優(yōu);軌跡規(guī)劃
中圖分類號:TP242
Trajectory optimization of manipulator tracking target based on path feature point algorithm
Zhang Qin
Huai ’an Bioengineering Branch, Jiangsu United Vocational and Technical College, Huai ’an 223200, China
Abstract: The traditional trajectory planning algorithm of manipulator has the problems of low control accuracy and large delay. In order to improve the tracking efficiency of manipulator, an optimization method of tracking target trajectory based on path feature point algorithm was designed. The phase plane method is used to adjust the algorithm to achieve higher processing efficiency. The results show that with the increase of the number of waypoints, the algorithm time is significantly extended. Setting too many waypoints can significantly improve the algorithm efficiency, and the planning time required by the whole calculation process can be significantly shortened. The proposed algorithm is shorter in time than other path planning algorithms and is more suitable for complex paths. This research has good practical application value and is easy to be popularized.
Key words: robot arm; Path feature point; time approximation optimal; trajectory planning
1 引言
在移動機器人的運動規(guī)劃中,機器人往往是以一個點存在,對移動機器人的規(guī)劃,更多的是使用各種搜索算法,在已經(jīng)構建好的地圖模型上,搜索出一條路徑從起始點到終止點的路徑曲線。采用傳統(tǒng)軌跡規(guī)劃算法進行分析時只考慮機械臂動力控制過程的非線性特征與電機轉(zhuǎn)速的制約,按照這一方式導致規(guī)劃軌跡無法完全發(fā)揮出機械臂應有的控制性能[1-2]。
現(xiàn)階段,可以對機械臂動力學模型進行軌跡規(guī)劃的算法通常選擇相平面法,設置路徑參數(shù)后,再轉(zhuǎn)換機械臂運動學與動力學模型參數(shù)能[3]。通過對路徑參數(shù)進行二階微分計算構建路徑參數(shù)化的動力仿真模型,之后建立路徑參數(shù)模型,使關節(jié)速率與力矩約束條件轉(zhuǎn)換成路徑約束條件,從而可以利用路徑參數(shù)二維優(yōu)化的方式來轉(zhuǎn)換軌跡規(guī)劃過程能[4-5]。劉學成[6]根據(jù)失穩(wěn)度指標構建得到由模糊神經(jīng)網(wǎng)絡與PID算法共同調(diào)節(jié)的模型來達到車輛穩(wěn)定操縱的效果。通過仿真測試可知,采用本文控制方案可以促進車輛操縱穩(wěn)定性的顯著提升。
本文為了提高機械臂(未完,下一頁)
|