超硬材料薄膜涂層研究進展及應(yīng)用
(作者未知) 2010/5/26
(接上頁)材料(包括鋼鐵)上沉積。因此應(yīng)用范圍相當廣泛。典型的應(yīng)用包括:高速鋼、硬質(zhì)合金等工具的硬質(zhì)涂層、硬磁盤保護膜、磁頭保護膜、高速精密零部件耐磨減摩涂層、紅外光學(xué)元器件(透鏡和窗口)的抗劃傷、耐磨損保護膜、Ge透鏡和窗口的增透膜、眼鏡和手表表殼的抗擦傷、耐磨摜保護膜、人體植入材料的保護膜等等。
DLC在技術(shù)上已經(jīng)成熟,在國外已經(jīng)達到半工業(yè)化水平,形成具有一定規(guī)模的產(chǎn)業(yè)。深圳雷地公司在DLC的產(chǎn)業(yè)化應(yīng)用方面走在國內(nèi)前列。不少單位,如北京師范大學(xué)、中科院上海冶金所、北京科技大學(xué)、清華大學(xué)、廣州有色院、四川大學(xué)等都正在進行或曾經(jīng)進行過DLC的研究和應(yīng)用開發(fā)工作。
DLC的主要缺點是:(1)內(nèi)應(yīng)力很大,因此厚度受到限制,一般只能達到lum~21um以下;(2)熱穩(wěn)定性較差,含氫的a:C-H薄膜中的氫在400℃左右就會逐漸逸出,sp2成分增加,sp3成分降低,在大約500℃以上就會轉(zhuǎn)變?yōu)槭?
5 碳氮膜
自從Cohen等人在20世紀90年代初預(yù)言在C-N體系中可能存在硬度可能超過金剛石的β-C﹥3N4相以后,立即就在全球范圍內(nèi)掀起了一股合成β-C3N4的研究狂潮。國內(nèi)外的研究者爭先恐后,企圖第一個合成出純相的β-C3N4晶體或晶態(tài)薄膜。但是,經(jīng)過了十余年的努力,至今并無任何人達到上述目標。在絕大多數(shù)情況下,得到的都是一種非晶態(tài)的CNx薄膜,膜中N/C比與薄膜制備的方法和具體工藝有關(guān)。盡管沒有得到Cohen等人所預(yù)測超過金剛石硬度的β-C3N4晶體,但已有的研究表明CNx薄膜的硬度可達15GPa-50GPa,可與DLC相比擬。同時CNx薄膜具有十分奇特的摩擦磨損特性。在空氣中,cNx薄膜的摩擦因數(shù)為O.2-O.4,但在N2,CO2和真空中的摩擦因數(shù)為O.01-O.1。在N2氣氛中的摩擦因數(shù)最小,為O.01,即使在大氣環(huán)境中向?qū)嶒瀰^(qū)域吹氮氣,也可將摩擦因數(shù)降至0.017。因此,CNx薄膜有望在摩擦磨損領(lǐng)域獲得實際應(yīng)用。除此之外。CNx薄膜在光學(xué)、熱學(xué)和電子學(xué)方面也可能有很好的應(yīng)用前景。
采用反應(yīng)磁控濺射、離子束淀積、雙離子束濺射、激光束淀積(PLD)、等離子體輔助CVD和離子注人等方法都可以制備出CNx薄膜。在絕大多數(shù)情況下,所制備薄膜都是非晶態(tài)的,N/C比最大為45%,也即CNx總是富碳的。與C-BN的情況類似,CNx薄膜的制備需要離子的轟擊,薄膜中存在很大的內(nèi)應(yīng)力,需要進一步降低薄膜內(nèi)應(yīng)力,提高薄膜的結(jié)合力才能獲得實際應(yīng)用。至于是否真正能夠獲得硬度超過金剛石的B-C3N4,現(xiàn)在還不能作任何結(jié)論。
6 納米復(fù)合膜和納米復(fù)合多層膜
以納米厚度薄膜交替沉積獲得的納米復(fù)合膜的硬度與每層薄膜的厚度(調(diào)制周期)有關(guān),有可能高于每一種組成薄膜的硬度。例如,TiN的硬度為2l GPa,NbN的硬度僅為14GPa,但TiN/NbN納米復(fù)合多層膜的硬度卻為5lGPa。而TiYN/VN納米復(fù)合多層膜的硬度競高達78GPa,接近了金剛石的硬度。最近,納米晶粒復(fù)合的TiN/SiNx薄膜材料的硬度達到了創(chuàng)記錄的105GPa,可以說完全達到了金剛石的硬度。這一令人驚異的結(jié)果曾經(jīng)過同一研究組的不同研究者和不同研究組的反復(fù)重復(fù)驗證,證明無誤。這可能是第一次獲得硬度可與金剛石相比擬的超硬薄膜材料。其意義是顯而易見的。
關(guān)于為何能夠獲得金剛石硬度的解釋并無完全令人信服的定論。有人認為在納米多層復(fù)合膜的情況下,納米多層膜的界面有效地阻止了位錯的滑移,使裂紋難以擴展,從而引起硬度的反常升高。而在納米晶粒復(fù)合膜的情況下則可能是在TiN薄膜的納米晶粒晶界和高度彌散分布的納米共格SiNx粒子周圍的應(yīng)變場所引起的強化效應(yīng)導(dǎo)致硬度的急劇升高。
無論上述的理論解釋是否完全合理,這種納米復(fù)合多層膜和納米晶粒復(fù)合膜應(yīng)用前景是十分明朗的。納米復(fù)合多層膜不僅硬度很高,摩擦系數(shù)也較小,因此是理想的工具(模具)涂層材料。它們的出現(xiàn)向金剛石作為最硬的材料的地位提出了嚴峻的挑戰(zhàn)。同時在經(jīng)濟性上也有十分明顯的優(yōu)勢,因此具有非常好的市場前景。但是,由于還有一些技術(shù)問題沒有得到解決,目前暫時還未在工業(yè)上得到廣泛應(yīng)用。
可以想見隨著技術(shù)上的進一步成熟,這類材料可能迅速獲得工業(yè)化應(yīng)用。雖然鈉米多層膜和鈉米晶粒復(fù)合膜已經(jīng)對金剛石硬度最高的地位提出了嚴峻的挑戰(zhàn),但就我所見,我認為它們不可能完全代替金剛石。金剛石膜是一種用途十分廣泛的多功能材料,應(yīng)用并不局限于超硬材料。且金剛石膜可以做成厚度很大(超過2mm)的自支撐膜,對于納米復(fù)合多層膜和納米復(fù)合膜來說,是無論如何也不可能的。
|
|
相關(guān)專業(yè)論文
|
|
推薦專業(yè)論文
|
|
|
|