微生物燃料電池:新型產(chǎn)能生物技術(shù)
(作者未知) 2010/5/26
微生物燃料電池:新型產(chǎn)能生物技術(shù)
微生物燃料電池(MFCs)提供了從可生物降解的、還原的化合物中維持能量產(chǎn)生的新機(jī)會(huì)。MFCs可以利用不同的碳水化合物,同時(shí)也可以利用廢水中含有的各種復(fù)雜物質(zhì)。關(guān)于它所涉及的能量代謝過(guò)程,以及細(xì)菌利用陽(yáng)極作為電子受體的本質(zhì),目前都只有極其有限的信息;還沒(méi)有建立關(guān)于其中電子傳遞機(jī)制的清晰理論。倘若要優(yōu)化并完整的發(fā)展MFCs的產(chǎn)能理論,這些知識(shí)都是必須的。依據(jù)MFC工作的參數(shù),細(xì)菌使用著不同的代謝通路。這也決定了如何選擇特定的微生物及其對(duì)應(yīng)的不同的性能。在此,我們將討論細(xì)菌是如何使用陽(yáng)極作為電子傳遞的受體,以及它們產(chǎn)能輸出的能力。對(duì)MFC技術(shù)的評(píng)價(jià)是在與目前其它的產(chǎn)能途徑比較下作出的。
微生物燃料電池并不是新興的東西,利用微生物作為電池中的催化劑這一概念從上個(gè)世紀(jì)70年代就已存在,并且使用微生物燃料電池處理家庭污水的設(shè)想也于1991年實(shí)現(xiàn)。但是,經(jīng)過(guò)提升能量輸出的微生物燃料電池則是新生的,為這一事物的實(shí)際應(yīng)用提供了可能的機(jī)會(huì)。
MFCs將可以被生物降解的物質(zhì)中可利用的能量直接轉(zhuǎn)化成為電能。要達(dá)到這一目的,只需要使細(xì)菌從利用它的天然電子傳遞受體,例如氧或者氮,轉(zhuǎn)化為利用不溶性的受體,比如MFC的陽(yáng)極。這一轉(zhuǎn)換可以通過(guò)使用膜聯(lián)組分或者可溶性電子穿梭體來(lái)實(shí)現(xiàn)。然后電子經(jīng)由一個(gè)電阻器流向陰極,在那里電子受體被還原。與厭氧性消化作用相比,MFC能產(chǎn)生電流,并且生成了以二氧化碳為主的廢氣。
與現(xiàn)有的其它利用有機(jī)物產(chǎn)能的技術(shù)相比,MFCs具有操作上和功能上的優(yōu)勢(shì)。首先它將底物直接轉(zhuǎn)化為電能,保證了具有高的能量轉(zhuǎn)化效率。其次,不同于現(xiàn)有的所有生物能處理,MFCs在常溫,甚至是低溫的環(huán)境條件下都能夠有效運(yùn)作。第三,MFC不需要進(jìn)行廢氣處理,因?yàn)樗a(chǎn)生的廢氣的主要組分是二氧化碳,一般條件下不具有可再利用的能量。第四,MFCs不需要能量輸入,因?yàn)閮H需通風(fēng)就可以被動(dòng)的補(bǔ)充陰極氣體。第五,在缺乏電力基礎(chǔ)設(shè)施的局部地區(qū),MFCs具有廣泛應(yīng)用的潛力,同時(shí)也擴(kuò)大了用來(lái)滿(mǎn)足我們對(duì)能源需求的燃料的多樣性。
微生物燃料電池中的代謝
為了衡量細(xì)菌的發(fā)電能力,控制微生物電子和質(zhì)子流的代謝途徑必須要確定下來(lái)。除去底物的影響之外,電池陽(yáng)極的勢(shì)能也將決定細(xì)菌的代謝。增加MFC的電流會(huì)降低陽(yáng)極電勢(shì),導(dǎo)致細(xì)菌將電子傳遞給更具還原性的復(fù)合物。因此陽(yáng)極電勢(shì)將決定細(xì)菌最終電子穿梭的氧化還原電勢(shì),同時(shí)也決定了代謝的類(lèi)型。根據(jù)陽(yáng)極勢(shì)能的不同能夠區(qū)分一些不同的代謝途徑:高氧化還原氧化代謝,中氧化還原到低氧化還原的代謝,以及發(fā)酵。因此,目前報(bào)道過(guò)的MFCs中的生物從好氧型、兼性厭氧型到嚴(yán)格厭氧型的都有分布。
在高陽(yáng)極電勢(shì)的情況下,細(xì)菌在氧化代謝時(shí)能夠使用呼吸鏈。電子及其相伴隨的質(zhì)子傳遞需要通過(guò)NADH脫氫酶、泛醌、輔酶Q或細(xì)胞色素。Kim等研究了這條通路的利用情況。他們觀(guān)察到MFC中電流的產(chǎn)生能夠被多種電子呼吸鏈的抑制劑所阻斷。在他們所使用的MFC中,電子傳遞系統(tǒng)利用NADH脫氫酶,F(xiàn)e/S(鐵/硫)蛋白以及醌作為電子載體,而不使用電子傳遞鏈的2號(hào)位點(diǎn)或者末端氧化酶。通常觀(guān)察到,在MFCs的傳遞過(guò)程中需要利用氧化磷酸化作用,導(dǎo)致其能量轉(zhuǎn)化效率高達(dá)65%。常見(jiàn)的實(shí)例包括假單胞菌(Pseudomonas aeruginosa),微腸球菌(Enterococcus faecium)以及Rhodoferax ferrireducens。
如果存在其它可替代的電子受體,如硫酸鹽,會(huì)導(dǎo)致陽(yáng)極電勢(shì)降低,電子則易于沉積在這些組分上。當(dāng)使用厭氧淤泥作為接種體時(shí),可以重復(fù)性的觀(guān)察到沼氣的產(chǎn)生,提示在這種情況下細(xì)菌并未使用陽(yáng)極。如果沒(méi)有硫酸鹽、硝酸鹽或者其它電子受體的存在,如果陽(yáng)極持續(xù)維持低電勢(shì)則發(fā)酵就成為此時(shí)的主要代謝過(guò)程。例如,在葡萄糖的發(fā)酵過(guò)程中,涉及到的可能的反應(yīng)是:C6H12O6+2H2O=4H2+2CO2+2C2H4O2 或 6H12O6=2H2+2CO2+C4H8O2。它表明,從理論上說(shuō),六碳底物中最多有三分之一的電子能夠用來(lái)產(chǎn)生電流,而其它三分之二的電子則保存在產(chǎn)生的發(fā)酵產(chǎn)物中,如乙酸和丁酸鹽?傠娮恿康娜种挥脕(lái)發(fā)電的原因在于氫化酶的性質(zhì),它通常使用這些電子產(chǎn)生氫氣,氫化酶一般位于膜的表面以便于與膜外的可活動(dòng)的電子穿梭體相接觸,或者直接接觸在電極上。同重復(fù)觀(guān)察到的現(xiàn)象一致,這一代謝類(lèi)型也預(yù)示著高的乙酸和丁酸鹽的產(chǎn)生。一些已知的制造發(fā)酵產(chǎn)物的微生物分屬于以下幾類(lèi):梭菌屬(Clostridium),產(chǎn)堿菌(Alcaligenes),腸球菌(Enterococcus),都已經(jīng)從MFCs中分離出來(lái)。此外,在獨(dú)立發(fā)酵實(shí)驗(yàn)中,觀(guān)察到在無(wú)氧條件下MFC富集培養(yǎng)時(shí),有(未完,下一頁(yè))
|