電能質(zhì)量檢測分析監(jiān)控新技術(shù)
(作者未知) 2010/6/3
(接上頁) Conf. Power Electron., Drives, Energy Syst. Industrial Growth, vol. 2, 1996, pp. 770–775.
[30] S. Santoso, J. P. Edward, W. M. Grady, and A. C. Parsons, “Power quality disturbance waveform recognition using wavelet-based neural classi-fier—Part 1: Theoretical foundation,” IEEE Trans. Power Delivery, vol. 15, pp. 222–228, Feb. 2000.
[31] S. Santoso, J. P. Edward, W. M. Grady, and A. C. Parsons, “Power quality disturbance waveform recognition using wavelet-based neural classifier—Part 2: Application,” IEEE Trans. Power De-livery, vol. 15, pp. 229–235, Feb. 2000.
[32] S. Santoso, E. J. Powers, and W. M. Grady, “Power quality disturbance identification using wavelet transforms and artificial neural networks,” in Proc. 7th Int. Conf. Harmon. Quality Power,1996, pp. 615–618.
[33] A. F. Sultan, G. W. Swift, and D. J. Fedirchu, “Detection of high impedance arcing faults using a multi-layer perceptron,” IEEE Trans. Power Delivery, vol. 7, pp. 1871–1877, Aug. 1992.
[34] W. W. L. Keerthipala, T.-C. Low, and C.-L. Tham, “Artificial neural network model for analysis of power system harmonics,” in Proc. IEEE Int. Conf. Neural Networks, vol. 2, Perth, Australia, 1995, pp. 905–910.
[35] S. Osowski, “Neural network for estimation of harmonic components in a power system,” Proc. Inst. Elect. Eng. C: Generation, Trans. Distrib., vol. 139, no. 2, pp. 129–135, 1992.
[36] M. Mallini and B. Perunicic, “Neural network based power quality anal-ysis using MATLAB,” in Proc. Large Eng. Syst. Conf. Power Eng., Hal-ifax, NS, Canada, 1998, pp. 177–183.
[37] R. Daniels, “Power quality monitoring using neural networks,” in Proc. 1st Int. Forum Applications Neural Networks Power Syst., 1991, pp. 195–197.
[38] G. P. Damarla, A. Chandrasekaran, and A. Sundaram, “Classification of power system disturbances through fuzzy neural network,” in Proc. Canadian Conf. Elect. Comput. Eng., vol. 1, 1994, pp. 68–71.
[39] G. P. Damarl(未完,下一頁)
|